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A general method for construction of numerical schemes for scalar
conservation laws which optimizes accuracy is applied to linear
advection problems and Burgers’ equation. The schemes, termed
accuracy optimized methods (AOMs), define and solve a quadratic
programming problem at each discrete time level to minimize pertur-
bations from higher order accurate methods subject to imposed
constraints. The constraints are used to impose desired behavior on the
numerical approximation of the solution of the conservation law. The
resulting schemes compare favorably with other high resotution
schemes for scalar conservation laws. Numerical examples are
presented for linear advection of discontinuities and development and
transport of shocks in Burgers” equation.  © 1993 Academic Press. Inc.

1. INTRODUCTION

The problems of numerical diffusion, resclution of shock
fronts, and spurious oscillations which arise in approxi-
mating the solution of scalar hyperbolic conservation laws
of the form

u,+ flu), =0,

t>0, xeR,

(1)

u(xs 0) = “o(x):

have long been a concern of physicists, engineers, and
mathematicians. It is not possible to maintain, for example,
monotonicity of a numerical solution near a shock front
with an unmodified higher order accurate method. One
needs only to examine the second-order method of Lax and
Wendroff [8] to find a scheme which may introduce
spurious oscillations for a variety of initial conditions even
in the lincar advection problem. Many authors have
contributed significantly to this general topic, including
work by Boris and Book [17, Harten [5], Osher [10],
Osher and Chakravarthy [11], Van Leer [14], Zalesak
[16], Sweby [13], and others. For general reference, a
recent comprehensive overview of the subject of numerical
methods for conservation laws has been published by
LeVeque [9].

The central idea in this paper is to construct a general
method which “optimizes” the accuracy of the approxima-
tion subject to constraints, such as monotonicity preserving,
total variation diminishing (TVD}, or entropy constraints.
The basic approach is to consider a higher order accurate
scheme and perturb it slightly when necessary to meet
imposed constraints. The perturbation is based on minimal
moedification of a higher order method which then defines
an optimization problem. The solution of the optimization
adds to the computational effort necessary to numerically
approximate the solution of Eq. (1). The extra computa-
tional effort can be reduced significantly since the optimiza-
tion problem can be localized to regions where the solution
is not smooth. This allows the use of second (or higher)
order methods over regions where numerical solution
profiles permit unconstrained application of such methods.
The “accuracy optimized method,” hereafter referred to as
AOM, requires that a constrained optimization problem be
solved at each time step in those narrow regions where an
unmodified method would violate imposed constraints (e.g.,
monotonicity preserving or TVD). In this paper we address
in detail the general linear advection problem and the
specific nonlinear Burgers’ equation, whereas in a second
paper to follow, the general nonlinear case will be examined.

A somewhat surprising and positive result is that,
although the approach is entirely motivated by a minimal
perturbation of a high order method required to satisfy
imposed constraints, the resolution of shock fronts with this
method compares favorably with the high resolution
methods presented in Sweby [13] which result from
addition of “antidiffusive” flux.

Imposed constraints on approximate solutions of scalar
conservation laws (e.g., monotonicity preserving} are often
required for mathematical or physical reasons. In the AOM
approach such constraints lead to a well-posed quadratic
programming problem. The resulting sum of squares objec-
tive function in this problem guarantees the existence and
uniqueness of the solution to the optimization preblem. To
illustrate the general methodology we initially focus in this
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paper on monotonicity preserving schemes, but we
emphasize that the same methodology can be applied to a
variety of other imposed constraining conditions, e.g., total
variation diminishing (TVD) or an entropy condition.

The purpose of this paper i1s to illustrate the
AOM framework; thus we develop the methodology by
considering the scalar case in both the linear and nonlinear
problems, but we note that extension is easily made to
strictly hyperbolic linear systems (see Lax [7]). Also, in this
paper the AOM is illustrated by developing schemes that
are perturbations of second-order methods. The AOM can
be extended to schemes which are perturbations of methods
which are higher than second-order accurate. These
extensions will be considered in another paper.

The methods presented here are not constructed to be
computationally efficient. The goal of this paper is only to
present initial results and introduce the alternate AOM
viewpoint for construction of numerical methods for scalar
conservation laws. The issues associated with efficiency of
the schemes will be addressed in future work.

In Section2 we present the motivation for the AOM
approach, identifying in a linear advection example case the
nature of the perturbation we propose, and we introduce
two asymmetric AOMs. In Section 3 we introduce a
symmetric version of the AOM which addresses in the linear
advection case some of the difficulties arising in the asym-
metric methods discussed in Section 2. An AOM modified
“combination” of the second-order Lax-Wendroff [8]
scheme and the double upwinding scheme of Warming and
Beam [15] is presented. Section 4 addresses the localization
of the optimization problem. In Section 5 we discuss the
general methodology as it applies to nonlinear problems
and illustrate the AOM on Burgers’ equation. In Section 6
we show that a numerical scheme which satisfies the
monotonicity constraint introduced in Section 2 is a TVD
scheme and hence AOM schemes developed using this
constraint are TVD. Section 7 contains numerical results
for both the linear and noniinear advection cases and
computational comparisons with other methods.

2. ACCURACY OPTIMIZED METHODS

Assuming that fis linear in Eq. (1), ie., f(u)=au, a>0,
we consider the conservation form discretization
Wit =ul — (@A), —u]_ ), (2)
on a mesh defined by nodes x; and grid lines x; , (,,. Define
t,and ¢, as discrete time levels, Ax and 41 as the grid size
in space and time, 4= At/4x, and u} =u(x;, 1,). The values
of u}, |, are defined by
(3)

n _ n "
Uis 12 =M1 (07 s 1)
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where m7, | , is a function chosen to represent the unknown
u between neighboring nodes. The point of evaluation,
%}, ;- is chosen as the point which is a characteristic
distance upwind from the grid line x; .. ,;,. Thus the grid line
values uj, |/, are in fact approximations of the unknown at
the grid lines x; ,,, for the next time level, 7, , ;. In Koebbe
[6] the general background for this method of describing
discretizations is discussed for the case where m},
are chosen to be polynomials of arbitrary degree with
coefficients depending on neighboring nodal values.

The accuracy of the scheme can be determined by fixing
the evaluation points af, ,, and coefficients of the poly-
nomials m}, ,, to satisfy accuracy conditions based on
standard truncation error analysis (see [6]). The simplest
example in this framework would be to choose the constant
functions m7, ,,, =u; and m?_,, =u]_,, which would yield
the conventicnal first-order upwinding scheme with ¢ > 0.

Another natural choice for mj, ,,, which will be used to
illustrate the AOM throughout this paper are the linear
interpolating polynomials

(4)

n " A1 n n n
m;. 1/2(°‘j+ 1/2)— Ui+ (”; —y 1) Xivin
and

(3)

mi_ o]y p) =0+ (] —uf)al_y,.

If we set af, ,,,=4(1+al), the resulting discretization is

exactly the second-order Lax—Wendroff [8] scheme for the
linear advection case. Choosing, instead,

mi el ) =u) — ) —ul)ag, (6)
and
mi_ G yp)=uj_ = Wi, —ul ol e (7)

with a7, | .= i{1 — ald) produces the second-order, double
upwinding scheme for Warming and Beam [15]. Since
the CFL limits for the Lax-Wendroff and Warming and
Beam schemes are 1 and 2, respectively, the range of the

evaluation point, &}, ,,, must be restricted by
O<afyip<l

for the Lax-Wendroff method and

=
N

S S
for the Warming and Beam method.

With the choice of m},,, given in Egs. (4) and (5),
expansion of (2) yields the discretization

NE
u:,»l+l =M;'+ (aj.) {_n(l —O(}'+1/2}+O£-1/2} (u}!_l—u;),

v
(8)
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where
ut o —ut
n_j—1 g
1 (9)
Uy — Ui

is the ratio of consecutive gradients of the unknown as used
by Sweby [13] and others.

With the discretization in Eq. (8) we are now able to
impose constraints on the numerical solution. Consider, for
example, a monotonicity preserving requirement, ie., the
condition that if an initial solution profile at time level ¢,, is
monotone, then the profile at time level ¢, ., is also required
to be monotone. Without loss of generality, we assume that

W <ul_,. (10)

The monotenicity constraint that will be imposed on the
AOM scheme in this case is

(11)

After substitution for «] "' using Eq. (8), subtraction of 1],
and division by u}_, — u}, the discretization yields the basic

inequality

1
0<{ak) {;(1 —al, 1,2)+a'.'_1,2}g1. {12)

J

It is easy to show that the same inequality applies for both
positive and negative ratios r; which implies that all
possible profiles of the unknown may be treated in the same
manner.

If our objective is to preserve monotonicity, then the
unmodified methods of Lax-Wendroff and Warming-Beam
cannot be used. While these methods are second-order
accurate, when —1 <r? <] the Lax-Wendroff method wil!
violate the monotonicity condition for some values of a4,
Similarly, when »/_, < —1 or rj_, >3 then the Warming—
Beam method will also fail to be monotone. See Van Leer
[14] for a thorough presentation of the precise regions
where failure occurs. This potential failure of monotonicity
occurs because these two methods “see” and accurately
transport a poiynomial of degree two which interpolates
three consecutive solution values. Under the conditions
described above on r;_, or r, this quadratic polynomial
transport can preduce nonmonotone numerical results as
illustrated in Fig. 1. The exact solution is a discontinuity,
but the Lax-Wendroff method “sees” and transports
the quadratic interpolatory polynomial, producing a non-
monotone result.

Transpert
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FIG. 1. The second-order Lax-Wendrofl scheme transports the
quadratic polynomial through the three points instead of the discontinuity.
Thus nonmonotone results occur.

To preserve monotonicity with our discretization, we will
modify the evaluation point of the linear polynomial
approximation which defines 4}, , ,. Instead of using «7, ,,
in discretization {4), define the perturbed evaluation point

Mesp=%eiptepp=3i(+al)+ef,,  (13)
and then use the discretization which minimizes the pertur-
bations, &7, ,,, of the higher order method in a way that
satisfies imposed constraints. For the work in this paper we
choose to minimize [g}3=X (7, ,,)", subject to the
imposed constraints. These constraints include satisfying
the basic inequality for nj_ ;.

- 1 n n
0<(ad) {F(I‘ﬂj+:/2)+nj_1/2}sla (14)
b
as well as the CFL limits which are
O0<hisipsl (15}

The choice of the ! norm has been made so that robust
available algerithms for solving quadratic programming
problems may be brought to bear on the minimization
process. We are relying heavily on the wealth of theory

~ underlying the solution of the quadratic programming

problem. Other norms have been considered, but not
implemented in the AOM framework.
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Now the problem is formally one of minimizing a simple
sum of squares quadratic function in &7, , , subject to linear
variable constraints. Because the nature of the objective
function guarantees that a solution is unique if one exists
and because choosing 3{1+ad)+¢], ,,=1 satisfies both
the basic constraint and the CFL limit, a solution does exist
(see Fletcher [37]). We are therefore left with a well-posed
quadratic programming problem at each time step.

It is important to remark that this methodology is
different from that of the flux-limiters described in Sweby
[13]. Here we seek to “optimize” accuracy by varying mini-
mally from a second-order method subject to constraints
imposed to preserve desirable properties on the approxima-
tion of the solution rather than adding a maximai amount
of “antidiffusive” flux. Additionally, instead of a local condi-
tion, this approach couples a/f grid line values if necessary.
In theory, a minor variation from Lax—Wendroff at one
point might have global effects. For example, a single
modification imposed at a sharp front might require global
modification, including some regions where the solution is
smooth. As will be seen, however, the optimization problem
may be localized in the sense that perturbations from the
second-order method occur only over those regions where
the basic inequality has forced modification. Section 4
contains a proof of this assertion.

To illustrate the AOM modification of the Lax—Wendroff
method we consider the initial condition of the square wave
described in Sweby [13], with @i=31, and move the
approximate solution 25 time steps. In the discussion below
we will refer to resolution of the shock in terms of the num-
ber of grid blocks necessary to represent the jump between
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the left and right states of the discontinuity. In the numerical
experiment throughout this paper, the jump will be from 0
to 1 or 1 to 0. For comparison, the same simulations are
done with the compressive “Super-Bee” flux limiter of Roe
[12] which is TVD and is a “high resolution” method.
Figure 2 presents the resuits of the approximation for the
AOM and Roe flux limiter method. The numerical solutions
are superimposed on a graph with the exact solution. The
figure illustrates two interesting and important properties.
First, note that upwind of each discontinuity the shock is
more highly resolved by the AOM than by the compressive
flux limiter. That is, the number of grid blocks necessary to
resolve the jump upwind is fewer for the AOM (two grid
blocks) than the Roe flux limiter method {four grid blocks).
This higher resolution upwind of the shock is an unexpected
but favorable outcome of the AOM approach. Such resolu-
tion was not, however, a primary objective of this modified
method. Note also that on the downwind side of each
discontinuity the compressive method of Roe is superior to
this version of the AOM in terms of shock resolution. The
reason for the difference in resclution on upwind and
downwind sides of the discontinuity is that, on the
downwind side of a discontinuity, the method of Lax-
Wendroff need not be modified at all to preserve the
monotonicity property. Hence, the ¢, , , values are all zero
and the method is monotonicity preserving, locally second
order, and numerically diffusive. On the upwind side, the
£, 1/ values must be adjusted away from zero in order to
satisfy the monotonicity condition (14).

The asymmetry of the approximate solution in the
method above is due to properties of the Lax-Wendroff

.3 4 -] b .7 .8 .9 1.8

FIG. 2. Approximations of shock resolution in the transport of a square wave are shown for (a) the AOM using Lax-Wendroff as a base scheme
and (b) the compressive “Super-Bee” scheme of Roe. The exact solution is plotted in each graph for comparison.
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3. Approximations of shock resolution in the transport of a square wave are shown for (a) the AOM using Warming and Beam as a base scheme

and (b) the compressive “Super-Bee” scheme of Roe. The exact solution is plotted in each graph for comparisen.

method and the monotonicity constraint. If, instead of using
Lax—Wendroff as the basic method, we begin with the
double upwinding scheme of Warming—Beam and mini-
mally perturb it to satisfy the monotonicity constraint (11);
then the resuits are predictably different. As before, the
minimal perturbation is defined by minimizing the sum of
squares of the ¢}, ,, subject to our constraining conditions.
The monotonicity constraint becomes

*{(ai){l+’7;+1/2—r;71’1;—1/2}‘<~1’ (16)
where
n;i”2=%(l-ai)+£fi 172 (17)

and the CFL condition on 7}, ,,, remains unchanged.

Figure 3 illustrates the results when the modified
Warming and Beam method is applied to the same square
wave used earlier. Note that with this approach the
downwind side of shock discontinuities are resolved more
highly when compared with the compressive flux limiter of
Roe but that the upwind side shows more diffusion. The
reasons for this asymmetry are identical with the remarks
made above about the modified Lax—-Wendroff method. On
the downwind side of steep gradients the Warming-Beam
method must be modified to satisfy the constraint, while on
the upwind side of steep gradients the interpolating poly-
nomial transported by the method never violates the
constraint; hence the method need not be modified and
increased numerical diffusion appears.

One possible approach at this point would be to average

the two outcomes developed in this section to produce a
“symmetric” method. This would be analogous to the
scheme of Fromm [4]. Instead, we propose in the next
section a combination of the two methods before the
optimization is carried out, which wiil produce distinctly
different and better results.

3. A CONVEX COMBINATION AOM

Motivated by the results of the previous section a
“symmetric” version of the AOM is described. In the basic
conservation discretization, define

Ui 1= =3{u ul ) =l i
+ u.f - (“j _“;—1) Pf+ 1/2} (18)
and
u;',-lﬂz %{u}’.’+ (u;—l ~u}'.') ’7;_ 172
tul_ = —ui ) el (19)

Here we have taken an equally weighted combination of
approximate values of the ], . from the Lax-Wendroff
and Warming—Beam methods. Note that we have added a
second set of variables, p7, ,, to the discretization. If we
choose n7,,,=73(1+al) as in Section2 and pJ,,,=
3{1 —al), then the method simplifies to the average
of Lax-Wendroff and Warming-Beam and is, therefore,
second-order accurate. Requiring the method to satisfy the
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monotonicity constraints leads, after some calculation, to
the inequality

{al) {1 . n
0$_2 F(l_r’j+1/2)+n_}71/2+1
i

+oj, 1/2“"‘f19f1/2}*<~1- (20)

The AOM uses perturbation terms &7, ,, and 87, |, of the
second-order accurate values of 7, , , and p}, | »; 1€, define

’Tfil,fz:%(l"‘al)"‘sfiuz (21)

and

Pl =1 —al)+ 37, (22)

The addition of such perturbations will allow the method
to preserve monotonicity and, as before, permit us to
“optimize” accuracy by minimally perturbing the
second-order method in such a way as to meet imposed

constraints. Carrying out this additional calculation yields
the fundamental monotonicity inequality

1 1 1 n n "n
Azgﬁ {} —5(1 +W~)—Ej+1/z}+5j_uz+5j+uz

i

(23)

H 1 H n 2
——rj_l {5(1 —aA)+5J1/2}sa’“2.

Formally, we state this particular symmetric AOM as

n+1__ 0 " g
wpT = —arul  p—wlp),

(24)

where u7, |, are defined as in Eqs. (18) and (19). The values
of #7, . and p], » are defined in Egs. (21) and (22) and are
chosen to minimize

Z [(Ef+1/2)2+ (‘5;+1/2)2:!= (25)
subject to the monotonicity constraint of Eq. (23) and the
two CFL constraints implied by the CFL limits on the two
unmodified methods. In the linear advection case this is, as
before, a well-posed quadratic programming problem with
linear variable constraints. The form of the quadratic
objective function, a simple sum of squares, coupled with
the known existence of a feasible point, guarantees the
uniqueness of the solution of the optimization problem.

As a secondary feature, we observe that in every case
tested this method has very high resolution shock-capturing
properties which compare favorably with the “Super Bee”
limiter of Roe. This feature will be illustrated in Section 7.
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Further, we note that the procedure of combining
Lax-Wendrefl and Warming—Beam in a convex combina-
tion and then optimizing is mathematically different from
optimizing each separately and then combining afterwards.
As will be discussed in Section 7, the extra play which comes
from having four variables per combined constraint
equation, as opposed to the two variables in each of the
separate methods, produces a different set of perturbation
values and better resolution of every shock front tested.

The advantage in using the symmetric method on
problems can be seen in the numerical experiments
presented below. The first two methods presented both have
some dissipative behavior on one side of the shock. The
symmetric method produces results that retain the best
resolution properties of each of the one-sided methods while
eliminating the dissipative effects of both the one-sided
methods. Note that if the one-sided methods produce
undesirable dissipative behavier in linear advection
problems then these methods cannot be expected to
produce better results in nonlinear problems. Thus it seems
appropriate to use the symmetric method over either of the
one-sided methods for both linear and nonlinear problems.

Finally, an error analysis of this combined method leads
to the result that the general perturbation from a second-
order method is given by

—aA

(Ax(u ) —&fp1p T &1 — 0o — 5;_ 172]

+O0(4x)%. (26)
It should be expected that constraining the numerical
method as we have precludes a method which is second
order everywhere. Nole, however, that il the £l n and
67, 1, are zero in the above equation then entire first-order
perturbation term disappears and the method is, as
expected, second order.

4. LOCALIZATION OF THE OPTIMIZATION PROBLEM

One potential problem with the approach of the AOM is
that the global optimization problem applied to the entire
domain may be computationally expensive. However, the
optimization process can be localized to those regions with
steep gradients, thereby avoiding excessive computation
which might arise from large scale discretizations and a
global optimization process. We formally state the result as
a theorem.

THEOREM 1. For the convex combination AOM addressed
in Section 3, and on those regions where both ratios satisfy

s, r_1<2,

(27)
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the global optimization process need not be utilized, and in
fact the solution to the global optimization over the entire
discretization problem is identical to that obtained by using
local optimization processes only where the ratios violate the
constraint above.

Proof. Consider the global optimization problem,
without regard to local ratios. It has a unique solution from
the form of the quadratic objective functional and the
linearity of variable constraints. If there is a region where all
ratios satisfy the inequality (27) then arbitrary replacement
of the values of &7, ,, and 87, ,; by zeros in that region will
satisfy both the inequality constraint in Eq. (23), the CFL
limits, and it will not increase the objective function value.
In fact, if these variables were not zero in the global
optimization solution, the objective function would,
upon replacement by such zero values, decrease, which is a
violation of the existence and uniqueness of the giobal
optimization solution. It is a simple process to show that for
the ratio limits described in (27) zero values assigned to
e, ,,» and 87, , will not violate any inequality constraints
defined by (23) or CFL constraints and hence they are
feasible. |

Therefore, in such regions where the solution is smooth
we may ignore the optimization process, preserve the
second-order scheme directly, and use a local optimization
process for regions where sharp profiles exist.

We conclude this section with three remarks about the
theorem. First, note that with some extra work one can alter
the end points of the region in Eq. (27) as a function of a4,
as in Van Leer [14]. However, the values given are the
sharpest possible for all values of a4, where all we assume is
that al < 1. Second, the endpoints in (27) are precisely the
left and right endpoints of Sweby's flux limiter region [13],
where the limiter definition changes. Finally, note that each
disjoint region where perturbations are necessary can be
treated independently. Thus disjoint optimization problems
can be solved in parallel.

5. NONLINEAR PROBLEMS—BURGERS’ EQUATION

In this section we briefly discuss the fundamental problem
(1), in the case where f is nonlinear and assume f*> 0. As
in Section 2 the AOM begins with the numerical scheme
written in the fundamentai conservation form

Wit = = A S ) — 2 {28)

where u7, | » are defined as in Eq. (4), ie,

”n —_— L) f!_ n n
Ui g =u;, -t (] —uj, 1) Hie12

(29)
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and

n

p— n n n
wl =i —u) e

(30)

One approach in this nonlinear case is to define the 1,
by

'1;11/2:'%{1 +)~fr{“;¢ 1/2)}"'8;11/2' (31)
Combining the above leads to
Wiy =+ — i)
x{3{l + Af(uf, 1/2)} + 8;4-1/2}’ (32)

and a similar equation in u}_,,. The particular discretiza-
tion above is the nonlinear analog of the Lax-Wendroff
scheme within the AOM framework.

There are two major points to be made with this
discretization. First, u/, ,,, are defined implicitly, involving
/" evaluated at u”_ ;. In most cases this implicit definition
requires an iterative loop at each time step in order to solve
for the u/, ,,,- If one makes reasonable assumptions about
the smoothness of f, then a fixed point iteration wili
converge for small enough 2 (Koebbe [61). If we define

Flu)=u—mjy p(afy,n()),
then one can compute Newton iterates using

B+l _ &
(], ) =AUl )
P P
(44 12) —miy (1 ) )}

%
L—mi ) (afy @] 12)°))

H

where the derivative of m], (], | (1)) is straightforward
to compute.

For example, in the case of the Lax-Wendroff analogy for
the nonlinear problem

n

R P P (L) 12)))

= 1= 3 —uf, ) A (] 1)),

Thus if bounds are known on the function /* the range of 4
can be chosen so that the denominator is never zero. Note
that the computation of these bounds is dependent on the
steepest gradient in the profile of the unknown u at the old
time level ¢,,.

Second, it can be shown after considerable calculation
that if ] |, are all identically zero then the method defined
in Eq. (28) is formally second-order accurate. The computa-
tions required rely heavily on the implicit definition of the
evaluation point in Eq. (31). Expansion of the derivative of
fin the evaluation point allows cancellation of terms in
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FIG. 6. The values of the perturbations in the domain of the simulation for (a) £}, |, in the Lax-Wendroff based AOM., (b) £7, |, in the Warming
and Beam based AOM, and (c) &7, ; and {d) &7, , in the combined AOM. Note the small “bumps™ near the large spikes in (c) and (d) which are

consequences of combining the methods before optimization.

A=0.25 was chosen and the experiment was run on 20, 40,
and 60 nodes. Tables I and II each show the computational
convergence rates for the /,, {,, and /, norms for both the
symmetric AOM and the symmetric base method for the
AOM without optimization at 10 time levels in the simula-
tion. The last time level in both tables corresponds to taking

300 steps with 40 nodes. The results show degradation in
convergence for some steps, but this also happens at the
same time levels for the unmodified scheme. Also, note that
the convergence rates were computed for fairly coarse grids.

Finally, note that the errors were computed for time
levels beyond the time necessary to transport the wave
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FIG. 7. Approximations of the solution of the linear advection problem with spike initial data using the (a) AOM of Section 3, (b) the “Super-Bee”
flux limited scheme. The methods are compared at the peak of the spike in {¢), and at the tails in (d). The exact solution is shown in both (a) and (b)

for comparison.

one period. Any problems that might cccur due to the
right boundary should have appeared by the end of the
simulation.
7.2. Nonfinear Advection—Burgers’ Equation Examples

For the first example using the nonlinear Burgers’
equation discussed in Section 5 we used the initial data

581/109/1-9

1.0, 00<x <03
ug(x)=u{x,0)=< —5x+ 2.5, 03<x<05
0.0, 05<x<1.0.

In this example the solution was advanced 52 time steps,
with Ax=0.01 and A =0.5. This number of time steps per-
mits comparison of the methods through shock formation
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FIG. 8. Results from transport of a sine wave, u(x, 0) = sin(zxx), by the
symmettic AOM plotted against the analytic solution on the interval
[0, 1] with 40 nodes and Courant number 0.25 after 300 time steps. There
is virtually no difference between the curves.

(40 time steps) and transport of the resulting shock for 12
additional steps. Additional time steps produced no increase
in the shock resolution width. With this scale the exact
shock speed is 0.25 units per time step, and this is accurately
represented by the numerical result. Figure 10 presents the

Numerical Selufion
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TABLE ]

Computational Convergence Rates for the Second-Order
Symmetric Base Method with and without Optimization

Symmetric Symmetric
AOM base scheme
Time level [/, error { error {,error [, error [{jerror {,error
1 1.59819 244867 2.20196 205573 210069 209816
2 221231 220251 2.24067 205873 2.13543 211736
3 1.43680 212129 200977 206152 207100 2.08848
4 165184 2.17060  2.10055 216902 201565 203341
3 190220 2.26906 221909 200418 199502 197135
¢ 203653 209261 2.08751 1.81232  2.05628 199737
7 1.47902 200424 178617 221534 2.18637 2.19825
8 1.35335 181416 1.62176 217955 216051 2.1859]
9 1.61260 2.17024 209271 227502 205943 209889
10 221526 215741  2.20733 207279 200853 201447
Note. The convergence rates are computed between cases with 20 and

40 nodes on a unit interval at corresponding time steps. In this case 1 =0.25
was chosen and the last time level represents 300 time steps for the 40-node
case and 150 time steps with 20 nodes.

approximation of the soiution for the unmodified Lax—
Wendroff scheme and the AOM using the Lax—Wendroff
scheme as the base scheme for three time levels. The first two
time levels occur during shock formation and the third is
after the shock is formed and has been transported. Note
the significant oscillations which have appeared in the
unmodified scheme on the upwind side of the shock.
The small diffusive behavior downwind of the shock in

First Epsifon Values

-.25

-.3e - -

—
a A .2 .3 .4 .5 .6 .7 -8 .9 1.8

FIG. 9. Transport of a{x, 0) = sin(zx) after 30 time steps is shown in (a). The perturbations necessary at the time step for the Lax-Wendroff portion
of the symmetric method are shown in (b). The perturbation is very local and occurs due to a flat spot in the representation of v at the time level.
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FIG. 10. The development and transport of a shock for Burgers® equation using the unmodified higher order method (top) and using the AOM based
on the Lax-Wendroff method and the Super-Bee flux-limited methods (bottom), The graphs show several time steps on the same plot 1o illustrate the
evolution of the approximations. The difference in the two methods in (b} is the same as shown in the square wave example in the linear advection

problems.

the results produced by the AOM method is due to the
Lax-Wendroff base scheme. The same behavior was
observed in the linear advection problem discussed in
Sections 2 and 3.
In the second example we applied the symmetric AOM
using the initial data
u(x, 0}y =|sin(2nx)|, xeR, t>Q,
with A=0.25, 99 nodes, and a total of 100 time steps.
Figure 11 shows the results of the simulation at various time
steps. Figure 11a shows the initial condition, Fig. 11b shows

the approximation just before the expected shock develops,
Fig. 11c shows the approximation as the shock is forming,
and Fig. 11d shows the approximation after the shock has
fully formed and has begun to move. The “lip” in Fig. 11¢
shows that the shock is forming in a nonlinear fashion,
which 1s expected, due to the form of the initial condition.
To try to understand the cause of the “lip” in this example
several other initial conditions were tested. These included
the top half of an eilipse repeated periodically to match this
example and cases where only a single hump of the sine
wave and ellipse were used. In each case a “lip” appeared.
However, the worst case is that shown in Fig. 12. In the
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FIG. 11. Transport of |sin(2zx)| in Burgers’ equation using an AOM with a second-order base scheme. The four figures include (a) the initial condi-
tion, (b) the approximation just before shock formation, (¢) the appreximation as the shock is forming, and (d) the approximation after the shock is
fully formed and being transported.

other three cases the “lip” was restricted to one node and conditions the wave breaks after a finite time and, due to the
could be attributed to a representation error on the grid.  steepness of the initial condition, the shock grows very
Unfortunately, the best way for seeing this effect cannot be rapidly. In the ellipse cases the shock starts building
presented here. In animations of the numerical results it is  immediately and does not build as rapidly. Thus the effect is
easy to see the effect. In the two cases with sine wave initial reduced in the ellipse cases. Finally, the initial condition
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FIG. 12. Transport of [sin(2zx)| in Burgers’ equation using AOM at the same time step as in Fig. 11b with perturbation values over the entire domain.

with the single sine wave hump was not as bad as the
repeated case. This indicates that the interaction of
successive humps in the periodic case is contributing to this
behavior.

In this test problem the same localization occurs which
was seen in the linear advection examples. Figure 12b shows
the graph of the perturbations over the entire domain.

2 Rl .2 .3 .4 .5 .6 .7 .8 .9 1.8

FIG. 13. Results from applying the Roe flux-limited method to the
initial condition {sin{2zx)| in Burgers’ equation. Note that the method
flattens out the tops of the sine wave unlike the AOM method results.

Figure 12a is the same as Fig. 11a and is included to ease
comparison of the perturbation locations and the numerical
solution. Again the nonzero values of the perturbation
are localized to small bands. The localization of the
optimization will be addressed in a paper on the AOM
applied to nonlinear problems. Finally, the results of the
same simulation using the Roe flux-limited scheme are
shown in Fig. 13. Note that this method tends to flatten off
the wave at the top, unlike the AOM scheme.

TABLE I

Computational Convergence Rates for the Second-Order
Symmetric Base Method with and without Optimization

Symmetric Symmetric
AOM base scheme
Time level /error { error /,error ferror [ error I;error
1 257528 2.52997 250473 202300 204479 2.04561
2 1.49990 220596 1.96964 202398 206801 2.06221
3 196935 212120 2.17618 201949 204137 204837
4 197333 221246 216833 202195 200166 201596
5 1.86730 208442 1.95579 201873 1.98250 1.97761
6 1.36742 2.00064 162783 191111 200202 196876
7 1.90622 1.95567 1.83797 1.81501 207989 208847
8 1.40433 2.08267 150834 209636 2.09840 2.10524
9 2.50421 223529  2.30559 2.16458 202907 205377
10 161054 217912 203851 205311 199083 200162
Note. The convergence rates are computed between cases with 40 and

60 nodes on a unit interval at corresponding time steps. In this case £ = 0.25
was chosen and the last time level represents 300 time steps for the 40-node
case and 450 time steps with 60 nodes.
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8 SUMMARY

In this paper a method for the construction of constrained
numerical approximations of scalar conservation laws has
been introduced. The AOM methods optimize accuracy of
the approximation, subject to imposed constraints. The
methods require the solution of a well-posed optimization
problem at each time step. The optimization problems can
be localized to regions where the sclution is not smooth. All
examples of the AOMs presented here are TVD and
produce high resolution approximations. The methods were
tested on linear advection examples and Burgers’ equation.
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